深圳欣凯祥科技有限公司

DH257 Hall-effect sensor is a temperature stable, stress-resistant, Low Tolerance of Sensitivity micro-power switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

DH257 is special made for low operation voltage, 1.65V, to active the chip which is includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, CMOS output driver. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries. This device requires the presence of unipolar magnetic fields for operation.

The package type is in a Halogen Free version has been verified by third party Lab.

Features and Benefits

- CMOS Hall Effect IC
- Totem-pole output
- Omni polar output switch
- Micro-power consumption
- Low working voltage at 1.65V
- High ESD protection
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- Solid state switch
- Handheld Wireless Handset Awake Switch (Flip Cell/PHS Phone/Note Book/Flip Video Set)
- Magnet proximity sensor for reed switch replacement in low duty cycle applications
- Water Meter
- PDA
- PDVD
- NB
- Pad PC

Functional Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100Ω resistor in series with V_{DD} is recommended. DH257, HBM > ±4KV which is verified by third party lab.

Absolute Maximum Ratings $At(Ta=25^{\circ}C)$

Characterist	Values	Unit	
Supply voltage,(<i>V</i> _{DD})		7	V
Output Voltage,(Vout)		7	V
Reverse Voltage, (VDD) (VOUT)		-0.3	V
Magnetic flux density		Unlimited	Gauss
Output current,(<i>Iour</i>)		1	mA
Operating temperature range, (Ta)		-40 to +85	°C
Storage temperature range, (<i>Ts</i>)		-65 to +150	°C
Maximum Junction Temp,(<i>Tj</i>)		150	°C
Thermal Resistance	(θ_{JA}) ST/SQ/UA	310/540/206	°C/W
	(θ_{JC}) ST/SQ/UA	223/390/148	°C/W
Package Power Dissipation, (P_D) ST/SQ/UA		400/230 /606	mW

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Electrical Specifications

DC Operating Parameters : Ta=25°C, VDD=2.0V

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	1.65		6	Volts
Supply Current,(<i>IDD</i>)	Awake State		1.4	3	mA
	Sleep State		3.5	7	μΑ
	Average		5	10	μΑ
Output Leakage Current,(Ioff)	Output off			1	uA
Output High Voltage,(VOH)	Iout=0.5mA(Source)	VDD-0.2			V
Output Low Voltage,(Vol)	Iout=0.5mA(Sink)			0.2	V
Awake mode time,(<i>Taw</i>)	Operating		40	80	uS
Sleep mode time, (T_{SL})	Operating		40	80	mS
Duty Cycle,(<i>D</i> , <i>C</i>)			0.1		%
Electro-Static Discharge	HBM	4			KV

DH257E ST/SQ/UA Magnetic Specifications

DC Operating Parameters : Ta=25 °C, VDD=2.0V

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Operating Point	B _{OP}	S pole to branded side, B > BOP, Vout On		30	50	Gauss
Release Point	B_{RP}	S pole to branded side, B < BRP, Vout Off	10	20		Gauss
Hysteresis	\mathbf{B}_{HY}	BOPx - BRPx		10		Gauss

Sensor Location, package dimension and marking

SQ Package (QFN2020-3)

0.55 0.35

Hall Plate Chip Location (Bottom view) 3

NOTES:

- **PINOUT (See Top View at left:)** 1.
 - Pin 1 VDD
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm;

(BOTTOM VIEW)

Hall Plate Chip Location (Top view) PINOUT (See Top View at

1

2

Hall Senso Location

Pin 1 VDD

left)

NOTES:

1.

- Pin 2 Output
- Pin 3 GND
- 2. Controlling dimension: mm;
- 3. Chip rubbing will be 10mil maximum;
- 4. Chip must be in PKG. center.